Probabilistic Verification of Discrete Event Systems

Håkan L. S. Younes Reid G. Simmons

(initial work performed at HTC, Summer 2001)

Introduction

 Goal: Verify temporal properties of general discrete event systems

- Probabilistic, real-time properties
- Expressed using CSL

Approach: Acceptance sampling

- Guaranteed error bounds
- Any-time properties

"The *probability is at least 0.7* that the stork satisfies its hunger *within 180 seconds*" "The Hungry Stork" as a **Discrete Event System**

Carnegie Mellon

"The Hungry Stork" as a Discrete Event System

For this execution path, at least, the property holds... (total time < 180 sec)

Verifying Probabilistic Properties

• Properties of the form: $Pr_{\geq \theta}(X)$

Symbolic Methods

- + Exact solutions
- Works for a restricted class of systems
- Sampling
 - + Works for all systems that can be simulated
 - Solutions not guaranteed

Our Approach: Acceptance Sampling

Use *simulation* to generate sample execution paths

- Samples based on stochastic discrete event models
- How many samples are "enough"?
 - Probability of false negatives $\leq \alpha$
 - Probability of false positives $\leq \beta$

Number of samples

• We can find an acceptance line and a rejection line given θ , δ , α , and β

Verifying Properties

- Verify $\Pr_{\geq \theta}(\rho)$ with error bounds α and β
 - Generate sample execution paths using simulation
 - Verify p over each sample execution path
 - If ρ is true, then we have a positive sample
 - If ρ is false, then we have a negative sample
 - Use sequential acceptance sampling to test the hypothesis $Pr_{\geq \theta}(\rho)$
- How to express probabilistic, real-time temporal properties as acceptance tests?

Continuous Stochastic Logic (CSL)

- State formulas
 - Standard logic operators: $\neg \phi$, $\phi_1 \land \phi_2$...
 - Probabilistic operator: $Pr_{\geq \theta}(\rho)$
- Path formulas
 - Time-bounded Until: $\phi_1 U^{\leq t} \phi_2$
- $Pr_{\geq 0.7}$ (true U^{≤180} ¬hungry)
- $Pr_{\geq 0.9}(Pr_{\leq 0.1}(queue-full) U^{\leq 60} served)$

Verification of Conjunction

- Verify $\phi_1 \land \phi_2 \land ... \land \phi_n$ with error bounds α and β
- What error bounds to choose for the φ_i's?
 - Naïve: $\alpha_i = \alpha/n$, $\beta_i = \beta/n$
 - Accept if all conjuncts are true
 - Reject if some conjunct is false

Verification of Conjunction

- Verify φ₁ ∧ φ₂ ∧ ... ∧ φ_n with error bounds α and β
 - 1. Verify each ϕ_i with error bounds α and β'
 - 2. Return **false** as soon as any ϕ_i is verified to be false
 - 3. If all ϕ_i are verified to be true, verify each ϕ_i again with error bounds α and β/n
 - 4. Return **true** iff all ϕ_i are verified to be true

"Fast[']reject"

Carnegie Mellon

Verification of Conjunction

- Verify $\phi_1 \land \phi_2 \land ... \land \phi_n$ with error bounds α and β
 - 1. Verify each ϕ_i with error bounds α and β'
 - 2. Return **false** as soon as any ϕ_i is verified to be false
 - 3. If all ϕ_i are verified to be true, verify each ϕ_i again with error bounds α and β/n
 - 4. Return **true** iff all ϕ_i are verified to be true

"Rigorous accept"

Carnegie Mellon

Verification of Path Formulas

- To verify $\phi_1 U^{\leq t} \phi_2$ with error bounds α and β
 - Convert to disjunction
 - φ₁ U^{≤t} φ₂ holds if φ₂ holds in the first state, or if φ₂ holds in the second state and φ₁ holds in all prior states, or ...

More on Verifying Until

- Given φ₁ U^{≤t} φ₂, let n be the index of the first state more than t time units away from the current state
- Disjunction of n conjunctions c₁ through c_n, each of size i
- Simplifies if φ₁ or φ₂, or both, do not contain any probabilistic statements

Verification of Nested Probabilistic Statements

Suppose ρ, in Pr_{≥θ}(ρ), contains probabilistic statements

Carnegie Mellon

Verification of Nested Probabilistic Statements

- Suppose ρ, in Pr_{≥θ}(ρ), contains probabilistic statements
 - $Pr_{\geq 0.9}(Pr_{\leq 0.1}(queue-full) U^{\leq 60} served)$
 - How to specify the error bounds α' and β' when verifying ρ ?

Modified Test

• find an acceptance line and a rejection line given θ , δ , α , β , α' , and

Modified Test

find an acceptance line and a rejection line given θ, δ, α, β, α', and

Performance

Carnegie Mellon

Summary

- Algorithm for probabilistic verification of discrete event systems
- Sample execution paths generated using simulation
- Probabilistic properties verified using sequential acceptance sampling
- Properties specified using CSL

Future Work

- Apply to hybrid dynamic systems
- Develop heuristics for formula ordering and parameter selection
- Use verification to aid policy generation for real-time stochastic domains